Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa

نویسندگان

  • Bo Li
  • Dan Liu
  • Qiaoru Li
  • Xinguo Mao
  • Ang Li
  • Jingyi Wang
  • Xiaoping Chang
  • Ruilian Jing
چکیده

Improved root architecture is an effective strategy to increase crop yield. We demonstrate that overexpression of transcription factor gene MORE ROOT (TaMOR) from wheat (Triticum aestivum L.) results in more roots and higher grain yield in rice (Oryza sativa). TaMOR, encoding a plant-specific transcription factor belonging to the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) protein family, is highly conserved in wheat and its wild relatives. In this study, tissue expression patterns indicated that TaMOR mainly localizes to root initiation sites. The consistent gene expression pattern suggests that TaMOR is involved in root initiation. Exogenous auxin treatment induced TaMOR expression without de novo protein biosynthesis. Both in vivo and in vitro experiments demonstrated that TaMOR interacts with TaMOR-related protein TaMRRP, which contains a four-tandem-pentatricopeptide repeat motif. Overexpression of TaMOR led to more lateral roots in Arabidopsis thaliana, and TaMOR-overexpressing rice plants had more crown roots, a longer main panicle, a higher number of primary branches on the main panicle, a higher grain number per plant, and higher yield per plant than the plants of wild type. In general, TaMOR-D-overexpressing lines had larger root systems in Arabidopsis and rice, and produce a higher grain yield per plant. TaMOR therefore offers an opportunity to improve root architecture and increase yield in crop plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (Oryza sativa L.)

Grain size is a trait that is important for rice (Oryza sativa L.) yield potential. Many genes regulating grain size have been identified, deepening our understanding of molecular mechanisms of grain size determination in rice. Previously, we cloned SMALL AND ROUND SEED 5 (SRS5) gene (encoding alpha-tubulin) from a small and round seed mutant and revealed that this gene regulates grain length i...

متن کامل

Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat.

For important food crops such as wheat and rice, grain yield depends on grain number and size. In rice (Oryza sativa), GW2 was isolated from a major quantitative trait locus for yield and encodes an E3 RING ligase that negatively regulates grain size. Wheat (Triticum aestivum) has TaGW2 homologues in the A, B, and D genomes, and polymorphisms in TaGW2-A were associated with grain width. Here, t...

متن کامل

Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.

Rice (Oryza sativa) and wheat (Triticum aestivum) are the two most commercially important crops, accounting for more than 40% of global food production. They were domesticated in different climates and differ largely in their growth environments: Rice is tropically cultivated in hot, wet climates, whereas wheat tends to be grown in cooler temperate climates. However, both crops have been bred i...

متن کامل

Knock out of the PHOSPHATE 2 Gene TaPHO2-A1 Improves Phosphorus Uptake and Grain Yield under Low Phosphorus Conditions in Common Wheat

MiR399 and its target PHOSPHATE2 (PHO2) play pivotal roles in phosphate signaling in plants. Loss of function mutation in PHO2 leads to excessive Pi accumulation in shoots and growth retardation in diploid plants like Arabidopsis thaliana and rice (Oryza sativa). Here we isolated three PHO2 homologous genes TaPHO2-A1, -B1 and -D1 from hexaploid wheat (Triticum aestivum). These TaPHO2 genes all ...

متن کامل

Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty.

Enhancing drought tolerance without yield decrease has been a great challenge in crop improvement. Here, we report the Arabidopsis (Arabidopsis thaliana) homodomain-leucine zipper transcription factor Enhanced Drought Tolerance/HOMEODOMAIN GLABROUS11 (EDT1/HDG11) was able to confer drought tolerance and increase grain yield in transgenic rice (Oryza sativa) plants. The improved drought toleranc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016